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ABSTRACT 

This report discusses the techniques and analysis for the precise 

reduction of the topocentric and apparent places of stars and artificial 

satellites.  Included is a full discussion of the method of star constants, 

independent day numbers, geocentric parallax, parallactic refraction, 

and errors.  Also described, in detail, is the analysis necessary for 

the real time modeling of the telescope-camera system, its theoretical 

basis, and differential reduction procedures.  In addition, an original 

method for computing the distance of an artificial satellite from two 

measurements of position and one of angular velocity is developed. 
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I.   INTRODUCTION 

The purpose of this report is three-fold.  One aim was the complete 

elucidation, through terms of the second-order in small quantities, for 

reducing the mean place of a star to its apparent place and thence to 

its topocentric place.  Another reason was to develop the basis for the 

telescope modeling used in the GEODSS Local Astrometric Calibration 

Procedure and prepare the way for the utilization of charge coupled 

devices or charge injected devices.  These two rely on classical photographic 

astrometry.  In particular, the plate modeling used in both the method 

1 2 
of dependences (Schlesinger ) and the plate overlap technique (Eichorn ) 

are extended to the real-time problem posed by artificial satellite 

reductions.  Lastly, the analysis necessary for the recovery of an 

artificial satellite's geocentric position from its measured, topocentric 

position is presented. 

For the most part the material contained herein is a review and 

summary of the relevant astronomical literature.  Original contributions 

are scattered throughout (principally Eqs. (12), § IIIB, § VI, § VIIA). 

The epoch-to-epoch reductions of a star's mean place and its cataloged 
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mean place have already been completely dealt with (Taff    ).  Hence, 

the initial data are position, proper motion, and annual parallax at the 

beginning of the nearest Besselian solar year. 



II.  MEAN PLACE TO APPARENT PLACE TO TOPOCENTRIC PLACE REDUCTIONS 

The reduction procedures now used for the mean place to apparent 

place reductions were developed by Bessel.  They represent approximations 

of the rigorous formulas which retain all second order terms.  Their 

accuracy is further enhanced by restricting their applicability to time 

intervals of ±0.5 year duration. 

A star's position in the equatorial coordinate system is specified 

by its right ascension and declination (i.e., longitude and latitude). 

The equatorial coordinate system is specified by its pole (the North 

Celestial Pole which is the point on the celestial sphere penetrated by 

the continuation of the Earth's axis through the Earth's north pole), 

its fundamental circle (the celestial equator which is the great circle 

on the celestial sphere described by the projection of the Earth's 

equator as seen from the center of the Earth), its zero vertical (half 

the great circle through the poles of the celestial equator whose 

intersection with the celestial equator marks the zero of the longitudinal 

coordinate, i.e., the vernal equinox or the First Point of Aries), its 

heliticity (right-handed), and-its epoch.  The epoch is denoted by a 

phrase such as "for equator and equinox of 1977.0," etc.  One must 

prescribe the epoch for both the celestial equator and the vernal equinox 

because the equatorial coordinate system is not fixed relative to an 

inertial one. 

The mean place of a star is denoted by (a , 6 ).  (The words place 

and position are used interchangeably herein).  For historical reasons 



the values of right ascension and declination found in catalogs (catalog 

mean place) include the small effects of elliptic aberration (Taff ). 

As the mean place of a star defines that direction in which an observer 

situated at the solar system barycenter would view the star, 

catalog mean place = mean place + e-terms. 

The true place of a star is its solar system barycentric position referred 

to the true (i.e., actual at date) equator and equinox.  It differs from 

the mean place by the effects of precession, proper motion, and nutation. 

The apparent place of a star is its geocentric position referred to the 

true equator and equinox.  It differs from the true place by the effects 

of annual aberration and annual parallax.  The topocentric place of a 

star is its position as determined by an ideal telescope.  It differs 

from the apparent place by the effects of astronomical refraction, 

diurnal aberration, and geocentric parallax. 

The two common methods for performing the mean place to apparent 

place reduction use either (i) star constants in right ascension (a, b, 

c, d), star constants in declination (a', b', c', d'), and Besselian day 

numbers (A, B, C, D, E, J, and J'), or (ii) independent day numbers (f, 

g, G, h, H, and i).  C and D are sometimes referred to as aberrational 

day numbers since they are used to correct for annual aberration while 

A, B, and E are used to correct for precession and nutation.  In addition, 

because they represent terms of the second order, J and J' are sometimes 

referred to as second-order day numbers.  All of these quantities are 



tabulated in the American Ephemeris and Nautical Almanac.  In the following 

A-E, J, J', f, g, h, and i are in seconds of arc and G and H (as well as 

right ascension and declination) are in radians.  The proper motion in 

right ascension (y) and the proper motion in declination (u') are in 

"/yr. 

When all terms of the second order are included the reduction 

procedures are of comparable accuracy.  However, the method employing 

star constants and Besselian day numbers is to be preferred when simultaneously 

reducing the positions of several stars to the same instant of time 

while the method employing independent day numbers is to be preferred 

when reducing the position of a single star for several different times. 

Moreover, the latter method is more expeditious when simultaneously 

reducing the positions of several stars close together on the celestial 

sphere to the same instant of time. 

If (a, 6) denotes the apparent place and I is the fraction of the 

year to (from) the beginning of the nearest Besselian solar year, then 

2 
a = a + sinl"[iy + Aa + Bb + Cc + Dd + E + Jtan 6 

o o 

+ (TT/K) (Cdsec£ - Dccose)], (la) 

= a + sinl"[Ty + f + gsin(G + a )tan6 
o o    o 

+ hsin(H + a )sec6 + Jtan26 ], (2a) 
o    o        o 



&  =  &    +  sinl"[xy' + Aa' + Bb' + Cc' + Dd1 + J'tanfi 
o o 

+ (TT/K) (Cd'sece - Dc'cose)], (lb) 

= 6 + sinl"[xy' + gcos(G + a ) + hcos(H + a )sin6 
o o o    o 

+ icos6 + J'tanfi ], (2b) 
o       o 

where 

a = m/n + sina tan6 , a' = cosa , (3a) o   o o 

b = cosa tan6 , b' = -sina , (3b) o   o o 

c = cosa sec6 , c' = tan£cos6  - sina sin6 , (3c) 
o   o o      o   o 

d = sina sec6 , d1 = cosa sin6 , (3d) 
o   o o   o 

and TT (the annual parallax in seconds of arc) has been set equal to zero 

(for simplicity) in Eqs. (2).  The auxiliary quantities are K = the 

constant of aberration (= 2074958) , m = the centennial precession in 

right ascension, n = the centennial precession in declination, and £ = 

the true obliquity of the eliptic.  If T denotes the number of tropical 

centuries since 1900.0 then, 

m = 307?2337 + 0?18630T + 8?0 x 10~6T2, (4a) 

n = 20047685 - 078533T - 377 x 10~4T2, (4b) 

e = 23°27'8726 - 467845T - 070059T2 +0700181T3. (4c) 



The small difference between the length of a tropical year and a Besselian 

solar year (the latter is shorter by 0.148T) is negligible. 

The independent day numbers are related to the Besselian day number 

via 

f = (m/n)A + E, i = Ctan£, (5a) 

gsinG = B, gcosG = A, (5b) 

hsinH = C, hcosH = D. (5c) 

The second-order day numbers are calculated (using the ± sign when 

6Q I  0) by 

J = sinl"[(A ± D)sina + (B ± C)cosa ][(A ± D)cosa 
o o o 

- (B ± C)sina ], (6a) o 

= sinl"[gsin(G + a ) ± hsin(H + a )][gcos(G + a ) 
O O 0 

± hcos(H + a )], (7a) o 

J' = -sinl"[(A ± D)sina + (B ± C)cosa ]2/2, (6b) 
o o 

= -sinl"[gsin(G + a ) ± hsin(H + a )]2/2. (7b) 
o o 

Finally the time of the start of the Besselian solar year (e.g., the 

instant when the right ascension of the fictitious mean sun is 18 40 ) 

can be computed from the expression 



Jan 0?813516 + T(24<?219878 - 0^000308T) - [25T] + LPYR,     (4d) 

where LPYR = 1 if 25T - [25T] = 0, 0 otherwise.  Thus, 1977.0 = Jan 

0*?4626.  This formula is valid if T e [0.25, 0.99]. 

As mentioned above these quantities are tabulated in the American 

Ephemeris and Nautical Almanac.  The dependent variable is (necessarily) 

ephemeris time but tables in which the mean sidereal time at Greenwich 

is the argument are also included.  Since the future relationship between 

universal time and ephemeris time can only be deduced from observations 

not yet made, the latter tables are not exact.  The error induced can't 

exceed ±0701 unless I <5 I > 84°. 1 o' 

In order to calculate the day numbers one needs to know the time. 

The development of accurate clocks, telescopes, and sophisticated reduction 

techniques has led to the discovery of irregularities in the Earth's 

rotation.  Hence, there are three different universal times.  UT0 is 

universal time as deduced directly from observations of the stars and 

the fixed, numerical relationship between an interval of universal time 

and the corresponding interval of sidereal time (see below).  UT1 is UT0 

corrected for the motion of the poles (also called polar wandering). 

UT1 represents the true angular rotation of the earth and is independent 

of the observer's location.  UT2 is UT1 corrected for the average seasonal 

variations in the Earth's rotation rate (due to polar cap melting, 

etc.).  However, UT2 has not been freed of secular (i.e., tidal friction) 

or other irregular terms.  Both the U. S. Naval Observatory and the 



National Bureau of Standards have atomic clocks designed to reproduce 

UT2.  The time they do produce is called coordinated universal time 

(UTC) and is distributed by radio station WWV.  Announced frequency and 

phase offsets keep UTC within ±0?1 of UT2. 

The measures of mean universal and mean sidereal times are related 

via 

1 mean sidereal day = 23 56 4.09054 of mean solar time, 

1 mean solar day = 24 3 56.55536 of mean sidereal time. 

Hence, when both are in the same units 

1 mean sidereal day/1 mean solar day = 0.9972695664 

(= 1/1.0027379093).  When the zero point is fixed (usually at 0hUT of 

g 
Jan 0) these scale factors allow conversion with an accuracy of ±0.01. 

If more precision is required or an apparent time is needed the equation 

of the equinoxes (= the difference between apparent and mean sidereal 

s 
time; it's always within ±1  of 0) must be considered. 

Let (N . T ) represent the time of the observation.  Here N^ > 0 
D  u D — 

is the number of whole days elapsed since Jan 1.0 = 0 UT Jan 1.  T  is 

UTC, T e[0, 24 ).  Then if A is the east longitude of the observer (in 

hrs) and T (1.0) is the mean sidereal time at 0 UT Jan 1, the mean 
s 

sidereal time at (N , T ) is given by 



T = T (1.0) + A - 24h + 1.0027379093T + 0.0657098222N .   (8a) 
s    s U D 

As an example, for 1977 T (1.0) = 6h42m7fl27 so if A = T = 0, N = 365 
s u      D 

the formula yields T = 6 41 9.833 while the mean sidereal time at 0 UT 
s 

Dec 32, 1977 is 6h41m9f835. 

To compute the fraction of the year elapsed to (from) the beginning 

of the nearest Besselian solar year we proceed in two steps. Let T(1.0) 

be the fraction of the year to Jan 1.0.  Compute T' via 

T' = T(1.0) + (N + Tu/24)/365.2422. (9) 

If N, < NfJul 1), T = x'.  If N > N^(Jul 1), T = T' - 1.  Thus, at 
a — D D   D 

(334d, 0h) in 1977 x' = [0.537 + (334 + 0/24)1/365.2422 = 0.91593 so 

T = -0.08407 since 1977.0 = Jan 0^463. 

Equation (8a) is useful if T (1.0) is known for any year.  The mean 

sidereal time at 0 UT of any calendar date is defined to be 

T = [6h38m45f836 + 8640184?542T + o!o929T2]mod(86400S)    (8b) 

where T denotes the number of Julian centuries of 36525 days which, at 

the midnight beginning the day, have elapsed since 12 UT Jan 0, 1900 at 

Greenwich.  Hence, to obtain T  at Jan 1.0, 1977 = 0 UT Jan 1, 1977 we 

observe that (77 years of length 365 days have elapsed) + (19  for leap 

years [1900 was not a leap year]) + (0.5 from 12 UT to 0 UT on Jan 0, 

1900) = 28124.5.  Straightforward substitution into Eq. (8b) yields T = 

6 42 7.127 as noted above. 



Now that we know the instant of time that the observations are to 

be made at, we can reduce the apparent place to the topocentric place. 

For stars this includes the effects of geocentric parallax, diurnal 

aberration, and astronomical refraction.  The effects of geocentric 

parallax are less than those of annual parallax by - (radius of earth)/l 

A.U.  Hence, they are universally ignored.  The computation of diurnal 

aberration requires the observer's geocentric coordinates. 

One's geocentric coordinates are geocentric distance, p, in units 

of the earth's equatorial radius (6378.160km), geocentric latitude, <j>', 

and geocentric longitude, A.  One's geodetic coordinates are height 

above mean sea level, H, in km, geodetic latitude, (}>, and geodetic 

longitude, A.  If H = 0 then 

psint})'   =  Ssinc}),   pcoscf)'   =  Ccosct>, (10a) 

tanc))'   =   (1  -  f)2tanc|>, (10b) 

A  = A, (10c) 

p2  =   [cos2<t> +   (1  -   f)4sin2<}>]C2, (lOd) 

where f is the flattening of the earth (1/f = 298.25) and the auxiliary 

quantities S and C are given by 

1/C2  =  cos24> +   (1  -  f)2sin24>, (11a) 

S  =   (1  -  f)2C. (lib) 

10 



Equations (11a, lib, 10b, and lOd) may be expressed directly in terms of 

f.  Through all terms of the fourth order the result is 

C - 1 + f/2 + 5f2/16 + 7f3/32 + 169f4/1024 

- [f/2 + f2/2 + 27f3/64 + llf4/32]cos2<() 

+ [3f2/16 + 9f3/32 + 77f4/256]cos4<t> 

- [5f3/64 + 5f4/32]cos6(J) + (35f4/1024)cos8:J), (12a) 

S = 1 - 3f/2 + 5f2/16 + 3f3/32 + 41f4/1024 

- [f/2 -  f2/2 -  5f3/64]cos2cf> 

+ [3f2/16 - 3f3/32 - 19f4/256]cos4(J) 

- (5f /64)cos6$ + (35f 71024) cos8c}>, (12b) 

cj>' = <(> - [f + f2/2 - f4/4]sin2(J) 

+ [f2/2 + f3/2 + f4/8]sin4({) 

- [f3/3 + f4/2]sin64> + (f4/4)sin84>, (12c) 

p - 1 - f/3 + 5f2/16 + 5f3/32 + 6009f4/1024 

+ [f/2 - 13f3/64 - 509f4/64]cos2(|) 

- [5f2/16 + 5f3/32 - 517f4/256]cos4<}) 

+ [13f3/64 + 13f4/64]cos6(() - (141f4/1024)cos8c|). (12d) 

11 



tf a correction for H is necessary then it may be approximately 

included by rewriting Eq. (10a) as 

psin<J>' = (S + H/a )sin<t>, (13a) 

pcos<(>' = (C + H/a )cos<j>, (13b) 
e 

where a  is the equatorial radius of the earth, 
e 

The observer's speed relative to the earth's axis of rotation (due 

to the rotation of the earth) is 

v = (1 revolution/sidereal day)pa coscj)'. (14) 

As there are 86164.09054 mean solar seconds in one mean sidereal day 

(see above), v = 0.4651028pcos<}) 'km/sec.  Division of v by the speed of 

light in vacuo (2.997925 x 105km/sec) yields v = 0'.'320002pcos<t>'.  The 

corrected coordinates (a1, 5') are given by 

a' = a + (vsinl")coshsec6, (15a) 

fi» = 6 + (vsinl")sinhsin6, (15b) 

where h = T - a  and vsinl" = 1.551416 x 10~6. 
s 

The last correction is for astronomical refraction and is computed 

bv 

12 



6 v  = 6* + R'cosn', obs 

= 6' + R'sec6'cscz'[sin4> - sin6'cosz'], (16a) 

i ,     = a' + R'sec6 . sinn', obs obs 

= a'  + R'sec6 ,   cscz'cosd>sinh', (16b) obs 

where h' = T - a', z' is the zenith distance and T\' is the parallactic 

angle corresponding to (a', 6').  For any right ascension a, declination 

6, and geodetic latitude <J), 

cosz  =  sin<J)sin6 + cos<J)cos6cosh, (17a) 

sinzcosri =  sgn(40 [sin(J>cos6  -  cos()>sin6cosh] , (17b) 

sinzsinri  =  cos<j)| sinh | , (17c) 

h  =  T     - a. (17d) s 

The quantity R' (in radians above, seconds of arc below) is the 

astronomical refraction, R, corrected for the local pressure in mbar, P, 

and the local temperature in F, T . 

R1 = (0.5020098P)R/(460 + T_). (18) 
r 

The astronomical refraction is the difference between the true and 

observed zenith distances (assuming refraction to be the sole cause of 

the difference) and may be approximately expressed by 

13 



3 
R = z' - z .  = R.tanz ,  - R„tan z , , (19) 

obs    1    obs    2     obs 

where R and R are constants.  The values used here are R = 587294, 

R„ - 070668 and correspond to standard values of (P, T„) = (1015.92mb, 
Z r 

50 F).  Equation (19) is accurate for z' _< 75  and includes effects due 

to the curvature of the earth. 

The fact that only local meteorological conditions affect the 

refraction can be simply deduced if the atmosphere is plane-parallel. 

Similarly, the leading term in Eq. (19) may be easily derived for a 

plane-parallel atmosphere.  These results are also valid to first order 

since (height of the atmosphere/radius of the earth) is a quantity of 

the first order.  That the results are valid to the second order too is 

known as the theorem of Oriani and Laplace. 

We now briefly discuss the accuracy of these procedures.  The mean 

place to apparent place reduction, using J and J1, and restricting 

|T j to £ 0.5 is ±07003 in each coordinate (Porter and Sadler ).  The 

neglect of geocentric parallax is permissable except at the poles (e.g., 

within 0.5 of the poles it's still less than ±0701).  The astronomical 

refraction correction here includes all terms through the second order 

and can systematically affect the reductions (because of a poor choice 

of R'/R, R-, , and R„) .  However, a systematic bias in zenith distance is 

easily discovered and corrected for.  Finally, one should use the apparent 

sidereal time to compute the refraction correction, not the mean sidereal 

time.  Except for zenith distances so large that Eq. (19) is in doubt, 

this produces no appreciable error. 

14 



III. DIFFERENTIAL REDUCTIONS 

It should be clear now that a considerable amount of labor is 

involved in reducing the position of a star.  Even with a modern hand 

calculator, it takes 20-30  to perform the reduction to ±0701.  To 

reduce N stars, all within a few degrees of each other, special procedures 

have been developed in order to minimize what was once hand labor. 

These methods have the characteristic that all of the stars are reduced 

relative to the same point on the celestial sphere and at the same 

instant of time.  Hence, these procedures are referred to as differential. 

In the age of electronic computers one might question the necessity 

or value of analytical devices which shorten routine calculations. 

After all, the procedures of § II, applied to each of the N stars individually, 

will unquestionably result in greater accuracy and easier programming. 

The answer is partly psychological, connected with the esthetics of the 

astronomer versus those of the arithmatic registers of a central processing 

unit, and partly practical.  The practical side deals with the ultimate 

accuracy needed, the ability to precisely ascertain truncation and 

roundoff error, and the development of widely applicable analytical 

tools. 

In the remainder of this section N stars occupy a small (£, 5 ) area 

on the sky.  They are observed nearly simultaneously.  When they are 

near the celestial poles additional labor is required (cf. § IIIC).  The 

center of the field occupied by the stars has mean coordinates (<a >, 

<6 >) and proper motions (<U>, <u'>) related to those of the stars via 

IS 



<a > = £a /N, <6 > = E6 /N, (20a) 
o     o     o     o 

<y> = Ey/N, <y'> = Zy'/N. (20b) 

The sums in Eqs. (20) extend over all N stars and parallax is neglected. 

The mean sidereal time of the reduction, T , is the midpoint of the 

observing interval. 

A.   Star Constants and Besselian Day Numbers 

Consider a position with mean equatorial coordinates (<a >, 

<6 >) and a second, nearby one, with mean equatorial coordinates (a , 

6 ).  Let the associated proper motions be (<y>, <y'>) and (y, y'). 

Then their apparent right ascensions (declination is treated analogously) 

from Eq. (la) are 

<a> = <a > + sinl"[Aa(<a >, <6 >) + Bb(<a >, <6 >) + ... o o    o o    o 

+ T<y>], (21a) 

a = a + sinl"[Aa(a , 6 ) + Bb(a , 6 ) + ... o o  o       o  o 

+ Ty], (21b) 

where the explicit dependence on right ascension and declination of the 

star constants in right ascension is indicated.  If Act = a - <a >, Aa 
o   o    o 

= a - <a>, etc., then 

Aa = Aa + sinl"{A[a(a , 8 ) - a(<a >, <5 >)] + ... 
o o  o       o    o 

+ T[y - <y>]}. (22) 

16 



However, 

so 

i(a , 6 ) -  a(<a >, <6 >) + da{x>   y) 
o     o       dx o  o 

Aa + 
9*(*> y) 

o    dy 
A6 , (23) 

o 

(<a >, <6 >)    (<a >, <6 >) 
o    o o    o 

a -  <a> + Aa + pAa + qA6 + TAysinl", o   r  o     o 

6 -  <6> + A6 + rAa + sA6 + xAy'sinl", 
o     o     o 

(24a) 

(24b) 

where Ay = y - <y>, Ay' = y' - <y'>, and 

p = sinl"{[Acos<a > - Bsin<a >]tan<6 > 

- [Csin<a > - Dcos<a >]sec<6 >} o        o      o (25a) 

q = sinl"{[Asin<a > + Bcos<a >]sec <6 > o o       o 

+ [Ccos<a > + Dsin<a >]sec<6 >tan<6 > o o      o     o 

+ 2Jsec <6 >tan<6 >}, 
o     o 

(25b) 

r = -sinl"{[Asin<a > + Bcos<a >] 

+ [Ccos<a > + Dsin<a >]sin<6 >}, o o      o 
(25c) 

s = -sinl"{Ctanesin<6 > + [Csin<a > - Dcos<a >]cos<6 > 
o o        o      o 

+ 2J'sec2<6 >}. 
o 

(25d) 

17 



Hence, as long as Aa , A6 are not too large (^0.1 rad = 5.7), the mean 

place of any nearby star can be reduced to its apparent place once the 

center of the field has been reduced.  As p, q, r, and s only depend on 

the position of the center of the field, it is little more labor to 

reduce all N stars simultaneously. 

B.   Independent Day Numbers 

The analytical complexities of the differential reduction can 

be minimized if independent day numbers are used.  This is because, 

unlike the star constants, the independent day numbers do not depend on 

the position of the center of the field.  Thus, proceeding analogously 

to the above [and using Eq. (2a) in place of Eq. (la)] we have 

so 

<a> = <a > + sinl"[f + gsin(G + <a >)tan<6 > + ... 
o o      o 

+ T<u>], (26a) 

a = a    + sinl"[f + gsin(G + a  )tan6    +   ... 
o o o 

+ TVI], (26b) 

Aa = Aa + sinl"{g[sin(G + a )tan6 - sin(G + <a >)tan<6 >] 
o o    o o      o 

+ ... + x[y - <y>]}, (27) 

or 

18 



a - <a> + Aa + PAa + QA6 + xAysinl", (28a) 
o     o     o 

6 = <6> + A6 + RAa + SA6 + TAu'sinl", (28b) 
o     o     o 

where, 

P = sinl"[gcos(G + <a >)tan<6 > + hcos(H + <a >)sec<6 >],   (29a) 
o      o o      o 

2 
Q = sinl"[gsin(G + <a >)sec <6 > + hsin(H + <a >)sec<6 >tan<6 > 

o       o o      o     o 

+ 2Jtan<6 >sec2<6 >], (29b) 
o      o 

R = -sinl"[gsin(G + <a >) + hsin(H + <a >)sin<6 >],        (29c) 
o o      o 

2 
S = sinl"[hcos(H + <a >)cos<6 > - isin<6 > + J'sec <6 >].   (29d) 

o      o o o 

C.   The Polar Regions 

Right ascension and declination form an orthogonal curvilinear 

coordinate system, on the celestial sphere, with a non-trivial metric 

tensor.  Hence, we cannot expect approximate procedures to work throughout 

the right ascension, declination ranges.  However, (acos6, 6) do form a 

set of coordinates appropriate everywhere on the celestial sphere. 

Wherever COS6<<1 (and 6 = ±81  is traditionally the dividing point in 

astrometry) it is simpler, and more accurate, to use the direction 

cosines (cosacos6, sinacos6, sin6) in place of (a, 6).  Thus, pole star 

tables are frequently given in this form.  The above reduction can be 

extended to the direction cosines (with considerable analytical complexity) 

Since we never need to observe artificial satellites this close to the 

poles, the results are not presented here. 
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As a general rule, any approximation procedure used in spherical 

astronomy deteriorates systematically with declination.  Thus, the position 

dependence of the second order terms in Eqs. (1) is purely declination, 

etc.  Hence, one must be aware of systematically biasing one's data 

reduction in this manner. 

D.   Apparent Place To Topocentric Place 

Once (<a>, <6>) have been obtained they must be corrected for 

diurnal aberration: 

<a'> = <a> + (vsinl")cos<h>sec<6>, (30a) 

<6'> = <6> + (vsinl")sin<h>sin<6>, (30b) 

<h> = T - <a>. (30c) 
s 

The (approximate) differential reduction is obtained from 

a- ~ <a»> + Act + (vsinl")sec<6>[Aasin<h> + A6cos<h>tan<6>],  (31a) 

6' ~ <<$'> + A6 + (vsinl")[-Aacos<h>sin<6> + A6sin<h>cos<6>], (31b) 

where, as above, Aa = a - <a>, etc.  The last correction is for refraction, 

<6 . > = <6'> + R'cos<n'>, (32a) obs 

<a , > = <a'> + R'sec<6 . >sin<ri'>, (32b) obs obs v   ' 

and, with Aa1 = a' - <a'>, AS' = 6' - <6'>, 
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a   = <a . > + Aa' + lAa' + JA6\ (33a) 
obs    obs 

5   -<6>+A6'+ KAa' + LA6'. (33b) 
obs    obs 

The constants I-L are computed assuming R = R tanz ,  [rather than using 
o   obs 

Eq. (19)], R'/R = R'/R, and R = 5872 (the error is third-order).  The 
o o o 

results are 

I = -R'[l - tan<z'>cos<n'>tan<6'> + tan2<z'>sin2<n'>], (34a) 

J = -R,tan<z'>sin<n'>sec<6,>ttan<zI>cos<ri,> - tan<6'>], (34b) 

K = -R'tan<z'>sin<n'>cos<6,>[tan<z1>cos<n'> + tan<6'>], (34c) o 

and, 

L = -R'[l + tan2<z'>cos2<n'>]. (34d) o 

The parallactic angle and zenith distance are computed from Eqs. (17). 

Hence, we now have the ability to completely and simultaneously 

reduce the positions of N stars (relative to any other position) with 

a minimum of computation.  We also see that the correction for astronomical 

refraction involves the most labor.  It is for this reason that, traditionally, 

this stage of the reduction was left out.  It's effects were absorbed in 

the analysis of the photographic plate (see § V).  In addition, because 

K is small, the annual and diurnal aberrations were not accounted for.  The 

complete reduction is recommended. 
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IV.  IDEAL ASTRONOMICAL PHOTOGRAPHY 

A.   Standard Coordinates 

Consider the ideal refracting telescope depicted in Fig. 1. 

OC is the optical axis of the telescope and GH is the focal plane.  The 

focal plane, normal to OC, contains a photographic plate.  OC intersects 

the plate at its center.  Produce OC to A where it intersects the celestial 

sphere.  If there were a star at A its light would be focused at 0 while 

a nearby star at B (on the celestial sphere) would have its light focused 

at R (on the plate).  To determine the relationship between the linear 

size of the photographic plate, I,   and the angular distance between the 

corresponding points on the sky, L, imagine R to be at the edge of the 

plate and the plane RCO to be parallel to the edge of the plate.  Then 

plane trigonometry in ARCO yields 

I =  2ftanL, (35) 

where f is the focal length of the object glass.  Hence, from the focal 

length and the size of the photographic plate one can compute (in angular 

measure) the area of the sky which can be recorded.  It is also important 

to know the plate scale (= 2L/&) so that a linear separation on the 

plate can be directly transformed into an angular separation on the sky. 

Again referring to Fig. 1, the plane tangent to the celestial 

sphere (also called the plane of the sky) at A is indicated.  This plane 

is (necessarily) perpendicular to OCA and, hence, parallel to both the 
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OBJECT GLASS 

PHOTOGRAPHIC 
PLATE 

Fig. 1.  Refracting telescope diagram for astronomical photography.  Not 
to scale. 
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focal plane and the photographic plate.  Two stars at I and B are shown 

projected onto the tangent plane at K and D.  Let <j OCJ = <$)  = <J ACI. 

Then, 

tan<j> = OJ/OC = AK/CK, (36) 

so that there is a similarity between the configurations of the stellar 

images on the plane of the sky and on the photographic plate.  If AS', 

AR' and OS, OR define the positive directions for Cartesian axes in the 

two planes (note the direction reversal) then coordinates (£', n1) on 

the tangent plane are related to coordinates (£, n) on the plate by the 

scale factor AC/OC, viz. 

V   = (AC/OC)£, n* = (AC/OC)n. (37) 

Ihe standard coordinates, (£, n), (introduced by Turner ) are measurable. 

Just as important, they can be computed from the right ascension and 

declination of the point A (i.e., the point of tangency) and the point 

on the celestial sphere, to which they refer.  I now demonstrate these 

statements. 

Figure 2 is a portion of Fig. 1 drawn from a different perspective. 

The arc AB is that portion of the great circle through the point of 

tangency and the star at B.  All radii (of the celestial sphere) connecting 

C to points on AB lie in the place of the great circle through A and B 
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18-9-5718 

Fig. 2.  Same as Fig. 1 seen from a different perspective. 
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and project onto the straight line segment AD (which lies in the tangent 

plane).  If P is the North Celestial Pole then AP is the meridian for A. 

Also drawn are ^', n' axes with the right ascension increasing with 

increasing £'.  Hence, in the figure, B is east of A's meridian.  Since 

AD lies in the tangent plane it is perpendicular to AC.  Similarly, AU 

is orthogonal to the great circle arc AP at A.  Finally, the dihedral 

angle UAD is equal to <3 PAB in the spherical triangle PAB.  Therefore, 

the projection (onto the plane of the sky) of the arcs of great circles 

preserves angles.  Let AB = <J>, <J BAP = 9 = <3 UAD.  Drop perpendiculars 

from D to AU (i.e., FD) and from D to AV (i.e., DE).  Then, from the 

plane right triangles FDA, DEA, 

V   = FD = ADsin6, (38a) 

n' = ED = ADcos6. (38b) 

Fowever, AD = ACtan<{> so [from Eqs. (36, 37, 38)], 

£ = ftan<t>sin6, (39a) 

H = ftanc{>cose. (39b) 

Since the focal length of the object glass, f, merely serves 

to define the linear scale, we may set f = 1 without loss of generality. 

To complete the demonstration of the assertions made above, let the 

equatorial coordinates (relative to some equator and equinox) of the 
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point of tangency be (A, A) and those of the star at B (relative to the 

same equator and equinox) be (a, 6).  Then from the spherical triangle 

PAB (in which^APV= 90° - A,^BP"= 90° - 6, < APB = a - A), 

cost}) = sin6sinA + cos6cosAcos(a - A), (40a) 

sin(}>sin8 = cos6sin(a - A), (40b) 

sintficosB = sinficosA - cos6sinAcos(a - A). (40c) 

Hence, 

£ = cot6sin(a - A)/[sinA + cotScosAcos(a -A)], 

= cosqtan(a - A)sec(q - A), (41a) 

n = [cosA - cot6sinAcos(ot - A)]/[sinA + cot6cosAcos(a - A)], 

= tan(q - A). (41b) 

Cotq = cot6cos(a - A) and q is the declination of that point on the 

celestial sphere where the great circle arc drawn from B intersects AP 

in a right angle.  The inverse relationships are 

tan(a - A) = £secA/[l - ntanA], (42a) 

cot6sin(a - A) = £secA/[n. + tanA], (42b) 

cot<5cos(a - A) = (1 - ntanA)/[n + tanA]. (42c) 

If |a - A| is small one should use Eq. (42d) in place of Eqs. (42b, c). 
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sin6 = [sinA + ncosA]/[l + E2 + r]2]1/2. (42d) 

It has now been demonstrated that from the (measurable) standard 

coordinates plus the equatorial coordinates of the point of tangency 

(which was chosen by the observer) one can compute the right ascension 

and declination of any other point on the photographic plate.  Conversely, 

from the equatorial coordinates of the star and the point of tangency 

one can predict the standard coordinates of the corresponding image 

point on the photographic plate.  Before demonstrating the utility (cf. 

§ IVB) of this result various series expansions derived from the rigorous 

formulas are listed for reference. 

% - (a - A)cosA - (a - A)(6 - A)sinA + (a - A)3cosA(3cos2A - l)/6 

+ .... 

3        2 - (a - A)cos6 + (a - A) cos6(3cos 6 - l)/6 

+ (1/2)(a - A)(6 - A)2cos6 + .... (43a) 

n * (6 - A) + (1/4)(a - A)2sin2A + (1/2)(a - A)2(6 - A)cos2A 

+ (6 - A)3/3 + ..., 

= (6 - A) + (1/4)(a - A)2sin26 + (6 - A)3/3 + ...,       (43b) 

and, inversely, 

3     3 a - A = £secA + CnsecAtanA - (E,  /3)sec A 

2      2 + Zj\  secAtan A + . .. , 

- £secS + (&  /6)sec6(sec 6-3) 

- (C/2)n2sec6 -... (44a) 
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6 - A a n - (C2/2)tanA - (£2/2)nsec2A - n3/3 + .... 

«T1- (?2/2)tan6 - n3/3 - ...  . (44b) 

Finally, note that the convergence of Eqs. (43, 44) deteriorates rapidly 

as \&\   -> 90 and that |q - A| is always small.  To exploit this note 

tanq = tan6sec(a - A), (45a) 

and, 

tan(a -A) = £secqcos(q - A). (45b) 

Hence, 

tan(q - A) = tan2[(a - A)/2]sin2q{[1 - tan2[(a - A)/2]cos2q},  (45c) 

so 

q = A + tan2[(a - A)/2]sin2q + (l/2)tan4[(a - A)/2]sin4q + .... (46) 

which is a rapidly converging series, the truncation error being <_  0701 if 

|o - A| < 30m. 

B.   The Method of Dependences 

Let us now see how the above analytical development can be 

used.  Since only ideal astronomical photography is discussed here, 
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sources of error will be glossed over (see § V).  However, it should not 

surprise the reader to learn that the coordinates measured on the plate, 

denoted by (x, y), are not exactly equal to the standard coordinates. 

Nonetheless, the assumption that the relationship between their differences 

is linear is usually sufficient.  Hence, we write (here) 

£-x=a£+bn+c, (47a) 

n-y=A£+Bn+C. (47b) 

The constants a, b, c, A, B, and C are called plate constants. In 

general they should be (and will be) determined by some estimation 

procedure such as maximum likelihood or least squares. 

The problem we face is the following:  An artificial satellite 

and N reference (or comparison) stars have been observed (i.e., photographed) 

We know the equatorial coordinates of the tangential point (A, A), and 

the equatorial coordinates for all of the stars, {(a., 6.)}.  Hence, for 

star j one can compute its standard coordinates, (£., H.)-  We have also 

measured the coordinates for the stars, {(x., y.)}, and for the satellite, 

(X, Y).  Using a model for the errors we wish to determine the standard 

coordinates for the satellite, (H, H) , and thence its equatorial coordinates. 

A general procedure to solve this problem was developed by 

Schlesinger .  It is called the method of dependences.  The minimal case 

N = 3 illustrates the essential features of the problem and can also be 

(approximately) solved by graphical means.  It also leads to the optimal 
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configuration of the comparison stars relative to the satellite.  For 

these reasons we now describe it in some detail. 

The situation, on the photographic plate, is illustrated in 

Fig. 3.  The reference stars are at S.. , S , and S„ while the program 

object (an artifical satellite here) is at C.  If one used Eqs. (47) for 

the plate model and knew the plate constants, then it would be a straightforward 

matter to compute the satellite's standard coordinates from its measured 

coordinates.  To avoid actually calculating the plate constants let us 

remember that the least squares equations of condition (for £, the 

treatment of r\  follows analogously) are 

£. - x. - a?. + bn. + c, i = 1, 2, 3 (48) 
J   J    j    J 

and, for the artificial satellite, 

E -  X = aH + bH + c. (49) 

Multipliers D., j = 1, 2, 3, called dependences, are introduced such 

that 

£  D.(£. - x.) - (E - X) = 0. (50a) 
j = 1 J  J   J 

This yields three equations (equivalent to the normal equations of 

least squares when the coordinate variances of the reference stars are 

equal) for the dependences, viz. 
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1 

Fig. 3.  The exposed photographic plate with reference stars at S., S„, 
and S~ and program object at C. 
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Z       D,r = 5, 

j = 1 
J J 

(51a) 

£  D.n. = H, 

j = 1 J 3 
(51b) 

Z  D. = 1. 
j = 1 J 

(51c) 

It also follows, from the definition of dependences , that 

I   D.x. = X, 

3 = 1  J J 

(52) 

and 

= X + 
3 
Z ytj-V (50b) 

Now, if the linear plate model, Eqs. (47), is sufficient, then 

since the unmodeled terms are of the second order, the dependences will 

be determined with sufficient accuracy if the measured coordinates are 

substituted for the standard coordinates in Eqs. (51).   If this is done 

then the dependences are given by 

X Xl 
x3 

Y yl y3 

1 1 1 

X  x  x 

Y yx   y2 

Xl X2 X3 

yl y2 y3 

(53) 

*This departure from the usual procedures of least squares analysis implies that 
the original estimation problem was not well-posed.  See § VI too. 
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The last determinant on the right hand side of Eq. (53) is twice the 

area of the triangle formed by the reference stars.  The other determinants 

have analogous interpretations leading to 

(54a) Dl = 

area 

area 

ACS2S3 

AS1S2S3 

CP1 

S1P1 

D2 = 

area 

area 

ACS S1 

AS1S2S3 

CP2 

S2P2 

D3 = 

area 

area 

ACS1S2 

AS1S2S3 

CP3 

S3P3 

(54b) 

(54c) 

Hence, the computation of the dependences has been reduced to counting 

squares on a piece of graph paper.  The satellite's standard coordinates 

are then calculated from Eqs. (51a, b) and the problem is solved. 

In addition to being a neat labor-saving trick, the geometrical 

significance of the dependences, coupled with the theorem that the 

center of mass of a plane triangle with a uniform surface density lies 

at the intersection of its meridians, shows that the satellite should be 

at the "center of mass" of the reference stars for maximum accuracy.  In 

the general case of N > 3 one can easily prove this result too (Plummer ) 

as long as the stellar coordinate variances are equal (i.e. , the stars 

have the same "mass"). 

To summarize, we now know how to go from the photographic 

plate (charge coupled device, charge injected device, etc.) to the sky 

and back, and how to arrange matters to achieve the best possible internal 

accuracy. 
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V.   REAL ASTRONOMICAL PHOTOGRAPHY 

The idealized situation considered in § IV will not obtain in 

practice.  Here I discuss the modeling of the most common and important 

sources of error.  These can be divided into two groups; those associated 

with the measurement of the photographic place (centering error, rotation, 

non-perpendicularity of the axes) and those associated with the telescope 

(centering error, tilt, incorrect focal length, radial distortion, 

decentering distortion, and coma).  In addition, the effects caused by 

not including astronomical refraction and annual aberration in the 

original reduction process are considered too. 

Centering Error (Translation) 

This is the error caused by a translation of the photographic plate 

relative to the measuring device.  The differences between the standard 

coordinates and the measured coordinates will be 

£ - x = a constant = h, (55a) 

r\  -  y = a constant = k. (55b) 

Rotation 

If the photographic plate is rotated relative to the measuring 

device by an angle ty   (I|J > 0 for a counter clockwise rotation) then, 

£ - x -   (1  -  COSI|J)5 -  rising, (56a) 

n - y = £simjj +  (1 - cos\J>)r). (56b) 
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Non-Perpendicularity of the Axes 

If the x and y axes are not orthogonal then, 

£ - x = ntan^, (57a) 

n - y = (1 - secifOn, (57b) 

where ty  is   the  acute  angle between  the r\  and  y axes   (e.g.,   x =  £  -  ntanijj,   y 

= risec^). 

Centering Error 

If the optical axis of the telescope (produced) pierces the sky at 

(A + 6A, A + 6A) instead of at (A, A) then the standard coordinates will 

be incorrect.  From Eqs. (40, 41) the leading terms are 

^ - x = cosA6A - nsinA6A, (58a) 

n - y = 6A + £sinA6A. (58b) 

If it can be assumed that the net result of all of the other sources of 

error can be adequately described by a translation, a rotation, and a 

dilation (so that the plate model is of the form 

£ = Ax + By + C, (59a) 

n = -Bx + Ay + D, (59b) 

with |A|>>|B|), then one can simply and rigorously correct for decentering 

via 
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2 
£=Ax+By+C+x  cosASA + xy6A, (60a) 

n = -Bx + Ay + D + xycosAfiA + y 6A. (60b) 

See Eichorn . 

Tilt 

If the photographic plate is tilted by an angle w relative to the 

focal plane then the relationship between the true distance (£) of an 

object from the optical axis and its apparent (measured) distance (&') 

i s 

IIV   =   seciJjcos(!JJ  - a)) t (61) 

where ij; is the angular distance subtended by &  at the center of the 

object glass, £ = ftanijj.  If the angles are small, 

I - V   - (#2, (62) 

so this error is of the second order.  In terms of the differences 

between the standard coordinates and the measured coordinates, 

2 
£ - x = (p£ + qCn)tano), (63a) 

2 
n - y = (pCn + qn )tanw, (63b) 

where p and q are constants. 
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Focal Length 

If the true focal length is f (instead of f) then any linear 

measure, Z,   on the plate will be in error by 

lit  -  l/f   = (4/f)(l - f/f). (64) 

This error is, therefore, linear in the standard coordinates. 

Radial Distortion 

A net radial distortion in the imaging process produces third order 

differences of the form 

K  - x - RC(C2 + H2), (65a) 

n - y = Rn(?2 + n2), (65b) 

where R is a constant. 

Decentering Distortion 

When all of the components of the object glass are not aligned 

properly the resulting imperfection is called decentering distortion, 

It results in errors of the second order adequately modeled by 

C - x = 2[P^2 + Q^n] + P(C2 + n2), (66a) 

n - y = 2[P5n + Qn2] + Q(£2 + n2), (66b) 

where P and Q are constants, 
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Coma 

Coma is a result of the dependence of the focal length on the 

apparent magnitude of the star.  If m is the apparent magnitude then, 

£ - x = Sm£, (67a) 

n - y = Smn. (67b) 

The constant S is strongly temperature dependent. 

Differential Refraction 

When the original reduction is only to the apparent place and not 

the topocentric place, the plate model absorbs the effects of both 

astronomical refraction and diurnal aberration.  However, unless the 

field is both small in extent and tanz £ 1, its approximate treatment 

requires a full second order expression in both coordinates.  When a 

first order treatment is adequate it can be modeled by 

£ - x = R'[(1 + X2)C + X Y n], (68a) 
o      z     z z 

n - y = R'[X Y I +   (1 + Y2)n], (68b) o  z z z 

where (X , Y ) are the standard coordinates of the zenith.  R (R') was 
z   z o  o 

introduced in Eqs. (34). 

Differential Aberration 

Since diurnal aberration is so small it is (formally) ignored. 

However, annual aberration may be introduced into the plate model via 

error terms of the form 
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K -  x = A£, (69a) 

p - y = An. (69b) 

When this is done and the astronomical refraction correction left out 

too, only general precession need be allowed for. 

To summarize, if the full reduction to apparent place is made 

initially, and the field is not too large, a linear model should suffice. 
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VI.  THE TELESCOPE MODEL 

Now that we understand the types of errors to be expected we turn 

to the problem of constructing, in real time, "plate constants" for the 

telescope.  For the set of reference stars we know the computed equatorial 

topocentric coordinates, {(a , , <5 , )}, and the measured equatorial 
obs  obs 

topocentric coordinates, {(a , 6 )}.  The latter are subject to error 

but the former are not.  For the artificial satellite we know its measured 

coordinates, (A , Am), and we want to deduce (A ,  , A , ).  The simplest 
T   T obs   obs 

linear model, for declinations within ±81  of the equator, relates e 

= a ,  - OL, (e.g., £ - x) to e = a ,  - <a . > (e.g., Q, ex - 6 . obs   T   & a   obs    obs 6   obs 

- <5 , > (e.g., n), E  = c - <c>, and e  = m - <m>.  Similarly for e- 
obs C m o 

= 6 ,  - 6_.  The quantities c and m refer to the color and apparent 
obs    T 

magnitude of the reference stars (observed at a constant camera gain 

setting).  The average values are denoted by <c>, <m>.  If necessary, 

one can obviously extend the model to include more than one color. 

Furthermore, if the camera gain is adjusted during each individual 

observation such that the size of the disc visible to the observer is 

always the same (and small), then the magnitude term (but not the color 

term) may be eliminated. 

Only actual observations and data analysis can determine the relative 

importance of the various terms as a function of the size of the field, 

spread in apparent magnitude, spread in color, etc.  In order to illustrate 

the type of analysis necessary the linear model is assumed.  Thus, 
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e  = u + ve + wer + xe + ye , (70a) 
a       a    o    cm 

er = U + Ve + Wer + Xe + Ye . (70b) 
o        a    o    c    m 

We obtain estimates for u, v, ..., Y by the procedures of least squares 

using equal weights.  More accurate weighting cannot be used for two 

reasons.  First, the Smithsonian Astrophysical Observatory Catalog 

contains incorrectly computed coordinate variances.  Second, insufficient 

measurements of m and c will be obtained to accurately estimate their 

variances.  After the plate constants are obtained one computes (A , , 
obs 

A , ) from 
obs 

A .  - Ap = u + v(A ,  - <a  >) + w(A   - <6  >) 
obs   T obs     obs       obs     obs 

+ x(C - <c>) + y(M - <m>), (71a) 

A   - A_ = U + V(A   - <a  >) + W(A   - <6   >) 
obs   T obs    obs       obs    obs 

+ X(C - <c>) + Y(M - <m>), (71b) 

where M, C are the apparent magnitude and color of the artificial satellite, 

Equations (71), regarded as two, linear, simultaneous, inhomogeneous 

equations in the two unknowns A .   A ,  have a determinant = 1 + (small 
obs,  obs 

quantity).  Hence, the number of truly significant figures remaining at 

this stage of the calculation is critical.  Thus, one might want to 

introduce a , 6  on the right hand sides of Eqs. (70) initially via 

e ->E  -= 0L, - <0t . >, 6- •* E~ • 6_ - <6 , >.  This would be analogous a   a   T    obs   8   6   T    obs & 
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to replacing (£, l) by (x, y) in the N = 3 version of the method of 

dependences [cf. below Eq. (50b)].  Then, the corresponding version of 

Eqs. (71) would still represent two, linear, simultaneous, inhomogeneous 

equations in the two unknowns A , , A ,  but the determinant of the 
obs  obs 

system would be exactly unity.  Hence, the need for high precision 

throughout the entire process would be alleviated.  Unfortunately, the 

estimation problem posed by this substitution (e.g., £  •* E , 

E~ •+ EJ requires a  priori knowledge of the variances and covariances of 

e , er, E , and Er.  The covariances can be expressed in terms of the a  o  a     o 

variances (given a weak assumption about the perpendicularity of the 

telescope's axes) but no estimate for the variances is possible.  Indeed, 

the telescope model is needed precisely because the variances are unknown. 

Thus, the substitution will not be used. 

There are still three possible sources of systematic error.  One is 

that the linear model may not suffice.  In order to decide this point an 

external estimate of the ultimate accuracy is needed.  This is discussed 

below.  Another source of error is due to the fact that (typically) the 

reference stars will be several magnitudes brighter than the artificial 

satellite.  Hence, if the camera gain setting is kept constant, one will 

be extrapolating the magnitude term instead of interpolating.  This can, 

and should be, avoided.  The last point concerns an error introduced by 

the reduction procedure itself (depending on the color). 

The refractivity of air varies by about two percent over the wavelength 

o 
range 4000-7000A.  When the seeing is good the stars are not seen as 
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points but as vertical spectra with the blue end up.  The effect is 

small (see Fig. 4), the angular distance between the red and blue-green 

ends being 0735, 0760, 1704, 2724 for zenith distances of 30(15)75°. 

Therefore, if all of the reference stars are the same color, the inclusion 

of a color term in Eqs. (70) will not only incorrectly model this effect, 

but will also systematically bias the results.  Ideally one should 

tabulate R , R , and R  [cf. Eqs. (19, 34)] as a function of c and 

differentially correct (from the beginning) for color.  This would be an 

extremely difficult thing to do.  Nonetheless, one can estimate this 

error (see below). 

One can obtain an estimate for the internal error in the artificial 

satellite's topocentric position as follows:  Solve Eqs. (71) analytically 

for A , , A , , say A ,  = f(u, v, . . . , Y).  The variance of A ,  is 
obs   obs      obs obs 

given by 

2 ,      3f\2  ,   ,      3f\2  , , v  3f\2 o. -  (a   3-)    +  (a    3-)    +  ... +  (oY  «rr) A  , u   du v   dv <3Y obs 

+ 2[E       ¥-lT+  ...  + I      mf], (72) uv  <3u  dv xy  dx  di 

where Z   is the covariance of u, v, etc.  The solution of the normal 
uv 

equations provides, coupled with the actual unbiased residual, estimates 

for the variances and covariances appearing in Eq. (72).  Thus, an 

estimate for the internal variance of A ,  (the situation is similar for 
obs 

the declination) is available.  As a formal result this is fine, but 
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probably useless. It is the external error (e.g., relative to the 

reference system of the FK4) that is of interest. A better way to 

estimate this is to have observed and reduced N + 1 stars, allowing N to 

contribute to the plate model. The extra star, which most closely 

matches the artificial satellite in color, apparent magnitude, and 

position, serves as a control on the entire procedure. 
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VII. ARTIFICIAL SATELLITE REDUCTIONS 

At this stage of the analysis I assume that the topocentric equatorial 

coordinates of the artificial satellite, (A , , A , ) are known and one 
obs  obs 

wants to compute geocentric equatorial coordinates (A, A).  To do this 

one needs to correct for refraction, planetary aberration, diurnal 

aberration, and geocentric parallax.  Three of these involve the distance 

to the artificial satellite.  If this is not known it must be estimated. 

An estimation procedure is described in § VIIA and the rest of § VII 

discusses the four corrections. 

A.   Distance Estimation 

In this subsection only lower case variables refer to geocentric 

values (a, 6, h = hour angle, OJ = angular speed, d = distance) and upper 

case variables refer to topocentric values.  Also, in this subsection 

only, the difference between the two sets is due solely to geocentric 

parallax. 

The geocentric location of the observer is given by s = (s = 

pa , <b', T ).  The fundamental relationship between the geocentric 
e      s 

location and the topocentric location is 

d = D + s. (73) 

In component form, 
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dcosficosa = DcosAcosA + scoscfj'cosT   , (74a) 

dcos6sina = DcosAsinA + scostb'sinT   , (74b) 
s 

dsin6  = DsinA + ssin(j)'. (74c) 

These equations may be manipulated to yield 

sin(a - A)  =   (s/d)cos<j>'secAsinH, (75a) 

sin(6   - A)   =   (s/d)sinc()cscrsin(r  - A), (75b) 

tanr  =   tanc)/cos[(A -  a)/2]sec[H +   (A - a)/2], (75c) 

d  = Dsin(A  -  Dcsc(6  -  T), (75d) 

7 2 2 
d     = D    + s     + 2Ds(sin<{>'sinA + cos<t>'cosAcosH) , (75c) 

or,   inversely, 

tan(a - A) = asinh/(l - acosh), (76a) 

tan(6 - A) = bsin(y - 6)/[l - bcos(Y - 6)1, (76b) 

a = (s/d)cos(f)'sec6 , (76c) 

b = (s/d)sin(J)'cscY, (76d) 

tany = tanr = tantj)'cost (a - A)/2]sec[h + (a - A)/2], (76e) 

D = dsin(6 - y)csc(A - y), (76f) 

2 2 2 D     =  d    + s     -  2ds(sin(J)'sin6 +  cos<J)'cos6cosh) . (76g) 

These relationships should be used rather than (74) since they will 

always yield more accurate results. 
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In order to estimate a distance one needs three positions or 

two positions and one angular velocity.  Utilizing the first data set is 

a standard problem in celestial mechanics and I shall not treat it here. 

Instead, I will develop the second approach. 

Expand a - A, 5 - A in powers of s/d.  The first-order result 

is 

a - A =   (s/d)cos<t>'sinHsecA, (77a) 

6  - A =   (s/d) [sincfj'cosA -  cos^'sinAcosH]. (77b) 

Differentiate Eqs. (77) with respect to time (rigorously Ephemeris time 

but mean solar time is sufficient) and form co = a cos 6+6 where z = 

dz/dt V z.  The leading terms are 

co    = Q    + 2(s/d)   {-0,   [sink'sinA + coscfj'cosAcosH] 
• •        • •    • 

+ [AcosAcosH + AsinAsinHjT cos(J)' - (d/d) [A(sin(J)'cosA 

- cos<))'sinAcosH) + Acoscfj'cosAsinH]} , (78) 

• 2 
so that not only d but d/d are required to estimate co .  It turns out 

that d/d can be approximately computed without knowledge of d.  I now 

show this. 

Differentiate Eqs. (75a, 75b) with respect to time.  The exact 

result is 
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d/d + acot(a - A) - 6tan6 = Acot(a - A) + HcotH, (79a) 

d/d + *EF + 6cot(6 - A) = AEF + A[cot(6 - A) - cot(r - A)] 

+ HEtan[H - (a - A)/2], (79b) 

where 

E = sinrcosr[cot(r - A) - cotr], (80a) 

2F = tan[(a - A)/2] + tan[H - (a - A)/2]. (80b) 

In addition, by differentiating the geocentric relationship which expresses 

the constancy of the direction of the total orbital angular momentum 

vector, one finds, 

Otsin6cos6cot (a - £2') -6 = 0, (79c) 

where Q' is the longitude of the ascending node.  The only approximation 

involved in determining d/d from Eqs. (79) concerns the computation of 

Q'.  One calculates Q'   from the two topocentric (instead of geocentric) 

positions, viz. 

tanA sinA - tanA sinA 
tan^' * tana'cosA, - tanA^A^ ' (80c) 

Thus, the observational data, the geometry, and the physics provides 

three, linear, simultaneous, inhomogeneous equations in the three unknowns 

50 



•  *  • * 
a, 6, d/d.  We now continue the estimation problem for d regarding d/d 

as known. 

If the orbit were circular and if a) = fl, then d would be given 

by 

d = d1 = (GM^/ft2)173, (81) 

where G is the gravitational constant and M is the mass of the earth; 

14 3   2 GM = 3.98603 x 10 m /sec .  A better guess for d corrects dn for the w 1 

effects of an eccentric orbit.  I write this as 

d2 = F(e)d1. (82) 

F(e) is discussed below.  A new estimate for the distance, d„, is then 

2 
calculated using d = d~ in Eq. (78), and then putting to  into Eq. (81) 

2 
in place of £2 .  Finally, the last estimate for d is computed from Eq. 

(82) with d  replacing d . 

F(e) is the average, over an orbital period, of the ratio of 

the geocentric distance in the elliptic orbit to the geocentric distance 

in a (fictitious) circular orbit with the same instantaneous angular 

speed.  Using standard relationships F(e) can be written as (e = eccentricity, 

E = eccentric anomaly) 

2TT 

- e2)1/3/27T] / (1 + ecosE)2/3dE i 'o 
P2/3(e)/e

4/3; e2 = 1/(1 - e2), (83) 
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where P?/^ is the Legendre function of order 2/3.  Table 1 lists F(e) 

for e = 0(0.05)1.  If the eccentricity can not be estimated to ±0.1 

(from other information) then an average value of F(e) should be used, 

/ 

1 
F(e)de = 0.8263. (84) 

Experience with this procedure indicates that d/d is poorly 

determined from Eqs. (79) because of the dominance of the cotangents in 

Eqs. (79a, 79b).  Since it is small, it may be better to set it equal to 

zero in Eq. (78) if one doubts its sign.  The overall accuracy is then 

±10 percent in d for d _> 3s, increasing with d. 

B.   Refraction 

The light rays from an extra-terrestrial object must pass 

through both space and the earth's atmosphere before reaching an earthbound 

telescope.  I assume that the extra-atmospheric path is a straight line. 

When the light enters the atmosphere the path becomes curved, with a 

continually changing curvature.  The light ray's path is bent towards 

the geocentric radius vector to the source so that refraction can alter 

zenith distance but not azimuth.  The difference in direction between 

the final tangent vector to the light ray's path (e.g., at the telescope) 

and the initial tangent vector to the light ray's path (e.g., at the top 

of the atmosphere) is called the astronomical refraction.  In Fig. 5 

<3 S'OZ (the telescope is at 0, Z denotes the zenith of 0) is the apparent 

zenith distance of the source and ^ SO'Z is the true zenith distance of 
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TABLE I. 

ECCENTRICITY CORRECTION FACTOR 

e F(e) 

0 1 

0.05 0.999027 

0.10 0.996101 

0.15 0.991197 

0.20 0.984275 

0.25 0.975276 

0.30 0.964119 

0.35 0.950697 

0.40 0.934873 

0.45 0.916469 

0.50 0.895257 

0.55 0.870938 

0.60 0.843115 

0.65 0.811248 

0.70 0.774575 

0.75 0.731972 

0.80 0.681663 

0.85 0.620560 

0.90 0.542382 

0.95 0.429811 

1 0 
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18-9-5721 

Fig. 5.  Diagram for refraction calculation.  C is the center of a spherical 
earth, the observer is at 0, and light from S enters the top of the atmosphere 
at A.  Not to scale. 
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the source.  The difference between these angles is the parallax of the 

source as seen from 0' relative to 0.  To determine the height of 0' 

(00'= L), regard the earth as a perfect sphere with radius a .  Then, 

for a spherical atmosphere, 

1 + L/a = u sinz  cscz    = u sin(z    - R)cscz    ,    (85) 
e   o   app   true   o    true        true 

where u  is the index of refraction of the atmosphere at the telescope 
o 

and R = z    - z   is called the astronomical refraction.  The net 
true   app 

refraction is R - r where r (the parallactic refraction) measures the 

angle subtended by L along the original light path (e.g., O'S" = OS" in 

Fig. 5).  The parallactic refraction for the natural celestial objects 

can only be appreciable for the Moon (and then only at large zenith 

distances).  Hence, it is universally ignored except for the precise 

predictions of solar eclipses.  However, r increases as the geocentric 

distance decreases, reaches one minute of arc for an object 500km above 

the earth's surface.  Hence, its universal neglect for artificial satellites 

will result in a systematic bias. 

An approximate expression for r (D = topocentric distance in 

km, H = height above earth's surface in km) is, 

rcotz  cosz   = -(48279/D)[l - 0.00130(2sec2z 
app   app app 

+ tan2z   ][1 - exp(-0.1205H)] 
app 

- 070757(sec2z   + tan2z  )Hexp(-0.1205H).   (86) 
app       app 

*In this subsection only the difference between true and apparent angles 
is due solely to refraction. 
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Thus, the equations analogous to Eqs. (16) for artificial satellites are 

6   =6    + (R' - r')sec6   cscz   [sine}) 
app   true true   true 

- sin6   cosz   ]. (87a) 
true   true 

a   = a    + (R1 - r')sec6  cscz   costbsinh   .       (87b) 
app   true app   true       true 

These equations must be solved iteratively for (a   , 6„   ) and r'/r = M true  true 

R'/R. 

C.   Planetary Aberration 

Planetary aberration refers to the aberration of light due 

explicitly to the motion of the source.  Thus, since the artificial 

satellite is D km away, it required D/c (c = speed of light = 2.997925 x 

10 km/sec) seconds for the light to reach the observer.  Neglecting this 

correction ( - 2" for a geostationary satellite) will also systematically 

bi.is the results.  If (A"1, A'") are the satellite's topocentric coordinates 

corrected for refraction and (A", A") are its topocentric coordinates 

corrected for both refraction and planetary aberration then, (approximately) 

A" = A"' - AD/c, (88a) 

A" = A*" - AD/c. (88b) 

D.   Diurnal Aberration 

This is exactly as for the stars.  Hence, (A', A') is related 

to (A", A") via [cf. Eqs. (15)], 
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A" = A' + (vsinl")cosH'secA\ (89a) 

A" = A* + (vsinl")sinH'sinA' (89b) 

H'f T - A1. (89c) s 

E.   Geocentric Parallax 

The last correction one must apply to (A1, A") to yield geocentric 

coordinates, (A, A), is the one for geocentric parallax. Adapting Eqs. 

(75) to the notation here we calculate successively 

d     = D     +s    + 2Ds(sin<{>'sinA'  + coscfj'cosA'cosH') , (90a) 

A =  A1   + arcsin[ (s/dHoscJj'secA'sinH* ], (90b) 

A = A'  + arcsin[(s/d)sin<J>'cscrsin(r'   - A)], (90c) 

with 

tanf'   =  tan<f>'cos[(A'   - A)/2]sec[H'   +   (A'   - A)/2]. (90d) 
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